3.1.32 \(\int \frac {x^2 (a+b \log (c x^n))}{d+e x} \, dx\) [32]

Optimal. Leaf size=107 \[ -\frac {a d x}{e^2}+\frac {b d n x}{e^2}-\frac {b n x^2}{4 e}-\frac {b d x \log \left (c x^n\right )}{e^2}+\frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{2 e}+\frac {d^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{e^3}+\frac {b d^2 n \text {Li}_2\left (-\frac {e x}{d}\right )}{e^3} \]

[Out]

-a*d*x/e^2+b*d*n*x/e^2-1/4*b*n*x^2/e-b*d*x*ln(c*x^n)/e^2+1/2*x^2*(a+b*ln(c*x^n))/e+d^2*(a+b*ln(c*x^n))*ln(1+e*
x/d)/e^3+b*d^2*n*polylog(2,-e*x/d)/e^3

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {45, 2393, 2332, 2341, 2354, 2438} \begin {gather*} \frac {b d^2 n \text {PolyLog}\left (2,-\frac {e x}{d}\right )}{e^3}+\frac {d^2 \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac {a d x}{e^2}-\frac {b d x \log \left (c x^n\right )}{e^2}+\frac {b d n x}{e^2}-\frac {b n x^2}{4 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*Log[c*x^n]))/(d + e*x),x]

[Out]

-((a*d*x)/e^2) + (b*d*n*x)/e^2 - (b*n*x^2)/(4*e) - (b*d*x*Log[c*x^n])/e^2 + (x^2*(a + b*Log[c*x^n]))/(2*e) + (
d^2*(a + b*Log[c*x^n])*Log[1 + (e*x)/d])/e^3 + (b*d^2*n*PolyLog[2, -((e*x)/d)])/e^3

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2354

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Dist[b*n*(p/e), Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x} \, dx &=\int \left (-\frac {d \left (a+b \log \left (c x^n\right )\right )}{e^2}+\frac {x \left (a+b \log \left (c x^n\right )\right )}{e}+\frac {d^2 \left (a+b \log \left (c x^n\right )\right )}{e^2 (d+e x)}\right ) \, dx\\ &=-\frac {d \int \left (a+b \log \left (c x^n\right )\right ) \, dx}{e^2}+\frac {d^2 \int \frac {a+b \log \left (c x^n\right )}{d+e x} \, dx}{e^2}+\frac {\int x \left (a+b \log \left (c x^n\right )\right ) \, dx}{e}\\ &=-\frac {a d x}{e^2}-\frac {b n x^2}{4 e}+\frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{2 e}+\frac {d^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{e^3}-\frac {(b d) \int \log \left (c x^n\right ) \, dx}{e^2}-\frac {\left (b d^2 n\right ) \int \frac {\log \left (1+\frac {e x}{d}\right )}{x} \, dx}{e^3}\\ &=-\frac {a d x}{e^2}+\frac {b d n x}{e^2}-\frac {b n x^2}{4 e}-\frac {b d x \log \left (c x^n\right )}{e^2}+\frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{2 e}+\frac {d^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{e^3}+\frac {b d^2 n \text {Li}_2\left (-\frac {e x}{d}\right )}{e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 105, normalized size = 0.98 \begin {gather*} \frac {-4 a d e x+4 b d e n x+2 a e^2 x^2-b e^2 n x^2+4 a d^2 \log \left (1+\frac {e x}{d}\right )+2 b \log \left (c x^n\right ) \left (e x (-2 d+e x)+2 d^2 \log \left (1+\frac {e x}{d}\right )\right )+4 b d^2 n \text {Li}_2\left (-\frac {e x}{d}\right )}{4 e^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/(d + e*x),x]

[Out]

(-4*a*d*e*x + 4*b*d*e*n*x + 2*a*e^2*x^2 - b*e^2*n*x^2 + 4*a*d^2*Log[1 + (e*x)/d] + 2*b*Log[c*x^n]*(e*x*(-2*d +
 e*x) + 2*d^2*Log[1 + (e*x)/d]) + 4*b*d^2*n*PolyLog[2, -((e*x)/d)])/(4*e^3)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 521, normalized size = 4.87

method result size
risch \(\frac {i b \pi \mathrm {csgn}\left (i c \,x^{n}\right )^{3} d x}{2 e^{2}}+\frac {i b \pi \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} x^{2}}{4 e}-\frac {i b \pi \mathrm {csgn}\left (i c \,x^{n}\right )^{3} d^{2} \ln \left (e x +d \right )}{2 e^{3}}+\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} x^{2}}{4 e}-\frac {b \ln \left (x^{n}\right ) d x}{e^{2}}+\frac {a \,d^{2} \ln \left (e x +d \right )}{e^{3}}-\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) x^{2}}{4 e}+\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} d^{2} \ln \left (e x +d \right )}{2 e^{3}}-\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} d x}{2 e^{2}}-\frac {i b \pi \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} d x}{2 e^{2}}-\frac {b n \,d^{2} \dilog \left (-\frac {e x}{d}\right )}{e^{3}}+\frac {a \,x^{2}}{2 e}+\frac {b \ln \left (x^{n}\right ) x^{2}}{2 e}-\frac {i b \pi \mathrm {csgn}\left (i c \,x^{n}\right )^{3} x^{2}}{4 e}+\frac {i b \pi \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} d^{2} \ln \left (e x +d \right )}{2 e^{3}}-\frac {b n \,d^{2} \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{e^{3}}+\frac {5 b n \,d^{2}}{4 e^{3}}+\frac {b \ln \left (c \right ) x^{2}}{2 e}-\frac {b \ln \left (c \right ) d x}{e^{2}}+\frac {b \ln \left (c \right ) d^{2} \ln \left (e x +d \right )}{e^{3}}-\frac {a d x}{e^{2}}+\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) d x}{2 e^{2}}-\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) d^{2} \ln \left (e x +d \right )}{2 e^{3}}+\frac {b \ln \left (x^{n}\right ) d^{2} \ln \left (e x +d \right )}{e^{3}}-\frac {b n \,x^{2}}{4 e}+\frac {b d n x}{e^{2}}\) \(521\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*ln(c*x^n))/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-b*ln(x^n)/e^2*d*x+a*d^2/e^3*ln(e*x+d)+1/2*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)/e^2*d*x-1/2*I*b*Pi*csgn(
I*c)*csgn(I*x^n)*csgn(I*c*x^n)*d^2/e^3*ln(e*x+d)+1/2*a/e*x^2+1/2*b*ln(x^n)/e*x^2+1/2*I*b*Pi*csgn(I*c*x^n)^3/e^
2*d*x+1/4*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2/e*x^2-b*n*d^2/e^3*ln(e*x+d)*ln(-e*x/d)-1/4*I*b*Pi*csgn(I*c)*csgn(
I*x^n)*csgn(I*c*x^n)/e*x^2-1/2*I*b*Pi*csgn(I*c*x^n)^3*d^2/e^3*ln(e*x+d)-1/4*I*b*Pi*csgn(I*c*x^n)^3/e*x^2+1/2*I
*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2*d^2/e^3*ln(e*x+d)+5/4*b*n*d^2/e^3-b*n*d^2/e^3*dilog(-e*x/d)-1/2*I*b*Pi*csgn(I*
c)*csgn(I*c*x^n)^2/e^2*d*x+1/2*b*ln(c)/e*x^2-b*ln(c)/e^2*d*x+b*ln(c)*d^2/e^3*ln(e*x+d)+1/4*I*b*Pi*csgn(I*c)*cs
gn(I*c*x^n)^2/e*x^2-1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2/e^2*d*x+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2*d^2/
e^3*ln(e*x+d)-a*d*x/e^2+b*ln(x^n)*d^2/e^3*ln(e*x+d)-1/4*b*n*x^2/e+b*d*n*x/e^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x+d),x, algorithm="maxima")

[Out]

1/2*(2*d^2*e^(-3)*log(x*e + d) + (x^2*e - 2*d*x)*e^(-2))*a + b*integrate((x^2*log(c) + x^2*log(x^n))/(x*e + d)
, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x+d),x, algorithm="fricas")

[Out]

integral((b*x^2*log(c*x^n) + a*x^2)/(x*e + d), x)

________________________________________________________________________________________

Sympy [A]
time = 14.32, size = 218, normalized size = 2.04 \begin {gather*} \frac {a d^{2} \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right )}{e^{2}} - \frac {a d x}{e^{2}} + \frac {a x^{2}}{2 e} - \frac {b d^{2} n \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\begin {cases} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \wedge \left |{x}\right | < 1 \\\log {\left (d \right )} \log {\left (x \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \left |{x}\right | < 1 \\- \log {\left (d \right )} \log {\left (\frac {1}{x} \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\left (d \right )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\left (d \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {otherwise} \end {cases}}{e} & \text {otherwise} \end {cases}\right )}{e^{2}} + \frac {b d^{2} \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{e^{2}} + \frac {b d n x}{e^{2}} - \frac {b d x \log {\left (c x^{n} \right )}}{e^{2}} - \frac {b n x^{2}}{4 e} + \frac {b x^{2} \log {\left (c x^{n} \right )}}{2 e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*ln(c*x**n))/(e*x+d),x)

[Out]

a*d**2*Piecewise((x/d, Eq(e, 0)), (log(d + e*x)/e, True))/e**2 - a*d*x/e**2 + a*x**2/(2*e) - b*d**2*n*Piecewis
e((x/d, Eq(e, 0)), (Piecewise((-polylog(2, e*x*exp_polar(I*pi)/d), (Abs(x) < 1) & (1/Abs(x) < 1)), (log(d)*log
(x) - polylog(2, e*x*exp_polar(I*pi)/d), Abs(x) < 1), (-log(d)*log(1/x) - polylog(2, e*x*exp_polar(I*pi)/d), 1
/Abs(x) < 1), (-meijerg(((), (1, 1)), ((0, 0), ()), x)*log(d) + meijerg(((1, 1), ()), ((), (0, 0)), x)*log(d)
- polylog(2, e*x*exp_polar(I*pi)/d), True))/e, True))/e**2 + b*d**2*Piecewise((x/d, Eq(e, 0)), (log(d + e*x)/e
, True))*log(c*x**n)/e**2 + b*d*n*x/e**2 - b*d*x*log(c*x**n)/e**2 - b*n*x**2/(4*e) + b*x**2*log(c*x**n)/(2*e)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^2/(x*e + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*log(c*x^n)))/(d + e*x),x)

[Out]

int((x^2*(a + b*log(c*x^n)))/(d + e*x), x)

________________________________________________________________________________________